微信部署ChatGpt,超简单!
微信部署ChatGpt,超简单!
最近ChatGpt真的非常的火,个人在几个月前已经尝试使用,问了一些简单的代码问题,它都能够顺畅准确的回答出来,甚至比国内外搜索引擎找到答案的速度要快很多,它甚至可以帮你修改论文,写文案等等,真的非常期待脑机结合的未来场景!
现在来尝试把ChatGpt部署在自己的微信小号(公众号、企业微信、钉钉等等)上。那我们废话不多说,直接上教程。
在github上已经有非常多的开源优秀作品,百花齐放。就以zhayujie的作品为例,项目地址:https://github.com/zhayujie/chatgpt-on-wechat
最好是自己有台服务器,开始教程。
简介
基于ChatGPT的微信聊天机器人,通过 ChatGPT 接口生成对话内容,使用 itchat 实现微信消息的接收和自动回复。已实现的特性如下:
- [x] 文本对话: 接收私聊及群组中的微信消息,使用ChatGPT生成回复内容,完成自动回复
- [x] 规则定制化: 支持私聊中按指定规则触发自动回复,支持对群组设置自动回复白名单
- [x] 多账号: 支持多微信账号同时运行
- [x] 图片生成: 支持根据描述生成图片,并自动发送至个人聊天或群聊
- [x] 上下文记忆:支持多轮对话记忆,且为每个好友维护独立的上下会话
- [x] 语音识别: 支持接收和处理语音消息,通过文字或语音回复
快速开始
准备
1. OpenAI账号注册
前往 OpenAI注册页面 创建账号,参考这篇 教程 可以通过虚拟手机号来接收验证码。创建完账号则前往 API管理页面 创建一个 API Key 并保存下来,后面需要在项目中配置这个key。
项目中使用的对话模型是 davinci,计费方式是约每 750 字 (包含请求和回复) 消耗 $0.02,图片生成是每张消耗 $0.016,账号创建有免费的 $18 额度,使用完可以更换邮箱重新注册。
2.运行环境
支持 Linux、MacOS、Windows 系统(可在Linux服务器上长期运行),同时需安装 Python
。
建议Python版本在 3.7.1~3.9.X 之间,3.10及以上版本在 MacOS 可用,其他系统上不确定能否正常运行。
1.克隆项目代码:
git clone https://github.com/zhayujie/chatgpt-on-wechat
cd chatgpt-on-wechat/
2.安装所需核心依赖:
pip3 install itchat-uos==1.5.0.dev0
pip3 install --upgrade openai
注:itchat-uos
使用指定版本1.5.0.dev0,openai
使用最新版本,需高于0.27.0。
配置
配置文件的模板在根目录的config-template.json
中,需复制该模板创建最终生效的 config.json
文件:
cp config-template.json config.json
然后在config.json
中填入配置,以下是对默认配置的说明,可根据需要进行自定义修改:
# config.json文件内容示例
{
"open_ai_api_key": "YOUR API KEY", # 填入上面创建的 OpenAI API KEY
"proxy": "127.0.0.1:7890", # 代理客户端的ip和端口
"single_chat_prefix": ["bot", "@bot"], # 私聊时文本需要包含该前缀才能触发机器人回复
"single_chat_reply_prefix": "[bot] ", # 私聊时自动回复的前缀,用于区分真人
"group_chat_prefix": ["@bot"], # 群聊时包含该前缀则会触发机器人回复
"group_name_white_list": ["ChatGPT测试群", "ChatGPT测试群2"], # 开启自动回复的群名称列表
"image_create_prefix": ["画", "看", "找"], # 开启图片回复的前缀
"conversation_max_tokens": 1000, # 支持上下文记忆的最多字符数
"character_desc": "你是ChatGPT, 一个由OpenAI训练的大型语言模型, 你旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。" # 人格描述
}
配置说明:
1.个人聊天
- 个人聊天中,需要以 "bot"或"@bot" 为开头的内容触发机器人,对应配置项
single_chat_prefix
(如果不需要以前缀触发可以填写"single_chat_prefix": [""]
) - 机器人回复的内容会以 "[bot] " 作为前缀, 以区分真人,对应的配置项为
single_chat_reply_prefix
(如果不需要前缀可以填写"single_chat_reply_prefix": ""
)
2.群组聊天
- 群组聊天中,群名称需配置在
group_name_white_list
中才能开启群聊自动回复。如果想对所有群聊生效,可以直接填写"group_name_white_list": ["ALL_GROUP"]
- 默认只要被人 @ 就会触发机器人自动回复;另外群聊天中只要检测到以 "@bot" 开头的内容,同样会自动回复(方便自己触发),这对应配置项
group_chat_prefix
- 可选配置:
group_name_keyword_white_list
配置项支持模糊匹配群名称,group_chat_keyword
配置项则支持模糊匹配群消息内容,用法与上述两个配置项相同。(Contributed by evolay)
3.语音识别
- 添加
"speech_recognition": true
将开启语音识别,默认使用openai的whisper模型识别为文字,同时以文字回复,目前只支持私聊 (注意由于语音消息无法匹配前缀,一旦开启将对所有语音自动回复); - 添加
"voice_reply_voice": true
将开启语音回复语音,但是需要配置对应语音合成平台的key,由于itchat协议的限制,只能发送语音mp3文件,若使用wechaty则回复的是微信语音。
4.其他配置
proxy
:由于目前openai
接口国内无法访问,需配置代理客户端的地址,详情参考 #351- 对于图像生成,在满足个人或群组触发条件外,还需要额外的关键词前缀来触发,对应配置
image_create_prefix
- 关于OpenAI对话及图片接口的参数配置(内容自由度、回复字数限制、图片大小等),可以参考 对话接口 和 图像接口 文档直接在 代码
bot/openai/open_ai_bot.py
中进行调整。 conversation_max_tokens
:表示能够记忆的上下文最大字数(一问一答为一组对话,如果累积的对话字数超出限制,就会优先移除最早的一组对话)character_desc
配置中保存着你对机器人说的一段话,他会记住这段话并作为他的设定,你可以为他定制任何人格 (关于会话上下文的更多内容参考该 issue)
运行
1.本地运行
如果是开发机 本地运行,直接在项目根目录下执行:
python3 app.py
终端输出二维码后,使用微信进行扫码,当输出 "Start auto replying" 时表示自动回复程序已经成功运行了(注意:用于登录的微信需要在支付处已完成实名认证)。扫码登录后你的账号就成为机器人了,可以在微信手机端通过配置的关键词触发自动回复 (任意好友发送消息给你,或是自己发消息给好友),参考#142。
2.服务器部署
使用nohup命令在后台运行程序:
touch nohup.out # 首次运行需要新建日志文件
nohup python3 app.py & tail -f nohup.out # 在后台运行程序并通过日志输出二维码
扫码登录后程序即可运行于服务器后台,此时可通过 ctrl+c
关闭日志,不会影响后台程序的运行。使用 ps -ef | grep app.py | grep -v grep
命令可查看运行于后台的进程,如果想要重新启动程序可以先 kill
掉对应的进程。日志关闭后如果想要再次打开只需输入 tail -f nohup.out
。
scripts/目录有相应的脚本可以调用
注意: 如果 扫码后手机提示登录验证需要等待5s,而终端的二维码再次刷新并提示
Log in time out, reloading QR code
,此时需参考此 issue 修改一行代码即可解决。多账号支持: 将 项目复制多份,分别启动程序,用不同账号扫码登录即可实现同时运行。
特殊指令: 用户向机器人发送 #清除记忆 即可清空该用户的上下文记忆。
常见问题
FAQs: https://github.com/zhayujie/chatgpt-on-wechat/wiki/FAQs
其实代理才是最难的,很多人不会,我有空会再写一篇教程专门讲怎么代理
本作品采用 知识共享署名-相同方式共享 4.0 国际许可协议 进行许可。